Neural Network Control of a Rehabilitation Robot by State and Output Feedback
نویسندگان
چکیده
In this paper, neural network control is presented for a rehabilitation robot with unknown system dynamics. To deal with the system uncertainties and improve the system robustness, adaptive neural networks are used to approximate the unknown model of the robot and adapt interactions between the robot and the patient. Both full state feedback control and output feedback control are considered in this paper. With the proposed control, uniform ultimate boundedness of the closed loop system is achieved in the context of Lyapunov’s stability theory and its associated This work was supported by the National Natural Science Foundation of China under Grant 61203057, the Fundamental Research Funds for the China Central Universities of UESTC under Grant ZYGX2013Z003, and the National Basic Research Program of China (973 Program) under Grant 2014CB744206 W. He ( ) Center for Robotics and School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China e-mail: [email protected] S. S. Ge Department of Electrical & Computer Engineering, National University of Singapore, Downtown Core, 117576 Singapore techniques. The state of the system is proven to converge to a small neighborhood of zero by appropriately choosing design parameters. Extensive simulations for a rehabilitation robot with constraints are carried out to illustrate the effectiveness of the proposed control.
منابع مشابه
Saturated Neural Adaptive Robust Output Feedback Control of Robot Manipulators:An Experimental Comparative Study
In this study, an observer-based tracking controller is proposed and evaluatedexperimentally to solve the trajectory tracking problem of robotic manipulators with the torque saturationin the presence of model uncertainties and external disturbances. In comparison with the state-of-the-artobserver-based controllers in the literature, this paper introduces a saturated observer-based controllerbas...
متن کاملadaptive control of two-link robot manipulator based on the feedback linearization method and the proposed neural network
This paper proposes an adaptive control method based on the feedback linearization technique and a proposed neural network, for tracking and position control of an industrial manipulator. At first, it is assumed that the dynamics of the system are known and the control signal is constructed by the feedback linearization method. Then to eliminate the effects of the uncertainties and external d...
متن کاملAdaptive RBF network control for robot manipulators
TThe uncertainty estimation and compensation are challenging problems for the robust control of robot manipulators which are complex systems. This paper presents a novel decentralized model-free robust controller for electrically driven robot manipulators. As a novelty, the proposed controller employs a simple Gaussian Radial-Basis-Function Network as an uncertainty estimator. The proposed netw...
متن کاملReconstruction of the neural network model of motor control for virtual C.elegans on the basis of actual organism information
Introduction: C. elegans neural network is a good sample for neural networks studies, because its structural details are completely determined. In this study, the virtual neural network of this worm that was proposed by Suzuki et al. for control of movement was reconstructed by adding newly discovered synapses for each of these network neurons. These synapses are newly discovered in the actu...
متن کاملReal-Time Output Feedback Neurolinearization
An adaptive input-output linearization method for general nonlinear systems is developed without using states of the system. Another key feature of this structure is the fact that, it does not need model of the system. In this scheme, neurolinearizer has few weights, so it is practical in adaptive situations. Online training of neuroline...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of Intelligent and Robotic Systems
دوره 80 شماره
صفحات -
تاریخ انتشار 2015